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Abstract. A novel fractal model for grain boundary regions of ceramic materials was developed. The model
considers laterally inhomogeneous distribution of charge carriers in the vicinity of grain boundaries as the main
cause of the non-Debye behaviour and distribution of relaxation times in ceramic materials. Considering the equiv-
alent circuit the impedance of the grain boundary region was expressed. It was shown that the impedance of the
grain boundary region has the form of the Davidson–Cole equation. The fractal dimension of the inhomogeneous
distribution of charge carriers in the region close to the grain boundaries could be calculated based on the relation
ds = 1 + β, where β is the constant from the Davidson–Cole equation.
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1. Introduction

Ac impedance spectroscopy (IS) is a well-known tech-
nique for investigating the electrical behaviour of elec-
trochemical cells and ionically conducting materials
such as polymers, ceramics and glasses. Impedance
spectroscopy analysis of ceramic materials enables
separation of bulk and boundary components of the
conductivity [1, 2]. In an ideal case, the result of IS
measurements over a wide range of frequencies can
be presented by several semicircles in the complex
ZRe–ZIm plane (Nyquist plot) [2, 3]. Each semicircle
represents the contribution of a particular process (elec-
trodes and contacts, grain boundaries, grains interior)
to the total impedance of the sample. Measured values
in the form of Nyquist plots are rarely ideal semicir-
cles. Most of the authors describe them as depressed
and/or deformed semicircles, with their centre lying
below the x-axis (Fig. 1(a)). This phenomenon, called
non-Debye relaxation [4, 5], is attributed to the distribu-
tion of Debye relaxations with different time constants

∗Present address: National Institute of Standards and Technology,
Gaithersburg MD 20899-8551, USA.

[6]. There are several papers in the literature [1, 7–9]
treating this phenomenon very systematically. Possible
explanations for a non-Debye relaxation behaviour of
grain boundaries are [10–12]:

(i) It is the consequence of inhomogeneity and vari-
ations among the grain boundaries combined in se-
ries/parallel connection, (ii) it is intrinsic to the mea-
sured response of each individual grain boundary and
(iii) it is a combination of the former two reasons.

Distribution of relaxations with different time con-
stants may be mathematically expressed by the Cole–
Cole equation [10]

Z = ZRe + j · ZIm = RG + RGB

1 + ( jωRGBC)(1−α)
, (1)

where Z is the overall impedance, ZRe and ZIm are the
real and imaginary components of the impedance, RG

is the resistance of the grains interior, RGB is the re-
sistance of the grain boundary region, α is a constant,
while C represents the capacitance of the grain bound-
ary region. Parameter α is related to the depression
angle shown in Fig. 1. by the equation α = θ/(π/2).
The Cole–Cole distribution is symmetrical with respect
to a central frequency or relaxation time (Fig. 1(b)).
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Fig. 1. (a) Impedance plot of depressed semicircle (θ -depression
angle), (b) complex impedances associated with the Cole–Cole (CC)
and the Davidson–Cole (DC) expressions (for β = 1−α = 0.8).

Another well-known function is the Davidson–Cole
equation [7, 13]:

Z = ZRe + j · ZIm = RG + RGB

(1 + jωRGBC)β
, (2)

in which parameters Z , ZRe, ZIm, RG, RGB and C
have the same meaning as it was given for the Cole-
Cole equation, and β is constant. The Davidson–
Cole equation leads to a skewed arc in the complex
plane (Fig. 1(b)). It is a semicircle at low frequency,
but asymptotic to β · π/2 at high frequencies [7].
Also, there are some other functions, such as that of
Havriliak–Negami, which have a more general form
[13]. All these functions are empirical, so the parame-
ters such as α and β do not have physical explanation.
Nevertheless these equations are very useful in fitting
experimental results.

The starting point in our investigation were the re-
sults of M. Seitz et al. [10]. They performed experi-
ments on samples with only two grain boundaries, as
well as on multi-junction ZnO varistors and found al-
most the same depression angle for both kinds of sam-
ples. They concluded that the non-Debye relaxation is
intrinsic to the response of the individual grain bound-

Fig. 2. Region in the vicinity of grain boundaries considered by
proposed model.

ary and is the result of a spectrum of relaxation times
within each grain boundary.

In our model the problems of non-Debye relaxation
processes in ceramics containing highly resistive grain
boundaries were treated. It has to be pointed out that
this model considers a region inside the grains, close
to the grain boundaries, with laterally inhomogeneous
distribution of defects and dopants and consequently
inhomogeneous distribution of charge carriers (Fig. 2).
Inhomogeneous distribution of the charge carriers in
the vicinity of grain boundaries results in local fluctua-
tions in the resistance of this region. These effects lead
to a non-ideal response of the grain boundary region.

In this work, a model that considers laterally inho-
mogeneous distribution of charge carriers in the vicin-
ity of the grain boundaries was constructed using fractal
theory. The possibility to calculate a fractal dimension
of the grain boundary region for ceramic materials us-
ing IS measurements is demonstrated. The equation
that connects the fractal dimension with the parameter
β from the Davidson–Cole equation was derived.

2. Model Discussion

It is assumed that there are locally inhomogeneous dis-
tribution of defects and dopants in the vicinity of grain
boundaries. These effects result in laterally inhomoge-
neous distribution of charge carriers and are supposed
to be the main reason for the non-Debye behaviour of
the grain boundaries. The region in the vicinity of the
grain boundary can be presented by the scheme shown
in Fig. 3. As can be seen (Fig. 3(a)) the grain boundary
is presented as a smooth plane, but there are differ-
ences in local distribution of defects in the vicinity of
the grain boundary which result in lateral variations of
resistances in the region close to the grain boundary.
This region could be as thick as 100 nm, or 1 µm or
even more, but it is not essential for the model construc-
tion. It is only important that base plane (zero plane)
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Fig. 3. (a) Grain boundary as a smooth two-dimensional surface, (b)
inhomogeneous distribution of defects in the vicinity of the grain
boundary resulting in different resistance (parts with different resis-
tance are shown as boxes of different heights).

is constructed, from which, up to the grain boundary,
we can recognize inhomogeneities. If the region in the
vicinity of the grain boundary is observed with one res-
olution, it could be represented by boxes with different
heights, where the height of the box is proportional
to the resistance (Fig. 3(b)). Hence, boxes with larger
resistance are higher and vice versa. The associated
capacitance is proportional to the area (S) of the sur-
face normal to the electrical field direction and is the
grain boundary capacitance. The associated resistance
of this interface is proportional to S−1 and is named the
grain boundary resistance. If the resolution is increased
it will be possible to recognise nonuniformity within

Fig. 4. Self-similar model for the surface of the region in the vicinity
of grain boundary.

each box, so that each box could be divided into new
boxes with uniform resistance and capacitance, and so
on. It was also assumed that the observed region could
be treated as a fractal object. A region in the vicinity
of the grain boundary, shown in Fig. 3(b), could be di-
vided into M parts (not necessarily of the same shape)
with the same surface area and the same concentration
of charge carriers. An example of such a part is shown
in Fig. 4. Magnification of this picture by factor a (scal-
ing factor) will show that each part has local inhomo-
geneities, i.e., there are N randomly distributed boxes
with a higher resistance within each part. Resistance RB

is the resistance of the whole part up to z = h. The ca-
pacitance of that surface (z = h) is C and the interface
resistance is RI . The resistance of each of the N boxes
has the value RB1 = a · RB , the capacitance has the
value C1 = C/a2, and the interface resistance is RI1 =
RI · a2. Further magnification by a reveals a new layer
with RB2 = a2 · RB1, C2 = C/a4, and RI 2 = RI · a4

etc. The impedance of a whole region in the vicinity
of the grain boundary is Z tot = Z(ω)/M , where Z(ω)

represents the impedance of the part shown in Fig. 4.
The equivalent circuit for such a part is given in Fig. 5
and can be described by the following equation:

Z(ω) = RB + 1

1 + jωRI C

RI
+ N

RB · a + 1

1 + jωRI C

RI a2
+ N

RB · a2 + 1

1 + jωRI C

RI a4
+ N

RB · a3 + 1

1 + jωRI C

RI a6
+ · · ·

(3)
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Fig. 5. The equivalent circuit of the model shown in Fig. 4.

In order to simplify this equation we introduced a new
function  that has the following value:

 = 1 + jωRI C

RI
. (4)

Substitution of Eq. (4) in Eq. (3) gave a simpler equa-
tion for the observed impedance:

Z() = RB + 1

 + N

RB · a + 1



a2
+ N

RB · a2 + 1



a4
+ N

RB · a3 + 1



a6
+ · · ·

(5)

According to literature data [14–16] the metal-
electrolyte interface shows similar non-Debye relax-
ation as ceramic materials, assuming that the origin of
such a behaviour is a roughness of the interface, which
has fractal nature. T. Kaplan et al. [14] made the self-
affine Cantor block model for the metal-electrolyte in-
terface and developed an equation for the impedance
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of such an interface, which has some similarities with
Eq. (5). Following their mathematical procedure the
impedance of the equivalent circuit given in Fig. 5 could
be derived by the following procedure.

Replacing  in Eq. (5) with  · a and multiplying
the fraction throughout by a yields

Z( · a) = RB + a

 · a2 + N

Z()

(6)

Assuming that we observe the case when the grain
boundary region is highly resistive in comparison to
the grain interior, i.e. RI >> RB , and supposing that
Z() → ∞ and  · Z() → 0 when  → 0, Eq. (6)
becomes

Z( · a) = a

N
Z() (7)

The solution of this equation has a form

Z() = K−β = K

(
1 + jωRI C

RI

)−β

(8)

where K is constant, and other symbols have the ear-
lier defined meanings. It has to be highlighted that the
Eq. (8) has the form of the Davidson–Cole equation.

Substitution of Eq. (8) in Eq. (7) give the following
value of parameter β:

β = ln N

ln a
− 1, (9)

Now it is possible to calculate the fractal dimension
of the observed model by ac impedance spectroscopy
measurements using the following relations. Accord-
ing to the definition, the fractal dimension (ds) of the
deterministic fractal is given by

dS = ln N

ln a
. (10)

Combination of Eqs. (9) and (10) leads to a final equa-
tion which connects the fractal dimension (dS) with
parameter β:

β = dS − 1, (11)

dS = 1 + β. (12)

This fractal dimension is related to the inhomoge-
neous distribution of charge carriers in the vicinity
of the grain boundary surface. If there is a laterally

homogeneous distribution of charge carriers at all
resolutions, then the fractal dimension of this sur-
face will be equal to 2, i.e., ideal semicircle will be
found. In our model this corresponds to the case when
N = a2. In contrast, an inhomogeneous distribution of
charge carriers results in a fractal dimension less than
2, i.e., there is non-Debye response of grain bound-
aries. In our model this is the case when N < a2,
meaning that there are N convexities at the observed
surface.

In order to illustrate the application of this model on
real ceramics materials derived relations were applied
on results of impedance spectroscopy measurements of
SnO2 sample doped with 0.025% Cr2O3. Temperature
and frequency ranges of the measurements were chosen
on way that allows the measurement of the impedance
of the grain boundary region. The Nyquist plot of the
sample is given in Fig. 6. Experimental results were
fitted using the Davidson–Cole equation. As it could
be seen from this figure, experimental results showed a
great deviation from an ideal semicircle. The obtained
value of the parameter β was 0.676. The fractal di-
mension of the grain boundary region was calculated
using Eq. (12) and the obtained value was 1.676. This
result suggests a rather strong inhomogeneity of the
charge carriers in the vicinity of the grain boundaries
as already expected from the shape of the experimental
curve.

As it was shown the impedance function of the
grain boundary region was derived in the form of the
Davidson–Cole equation. On this way the parameter
β obtains a physical meaning, because it represents a
measure of the inhomogeneity of the distribution of
charge carriers in the vicinity of grain boundaries. The
derived model enables a calculation of the fractal di-
mension of the grain boundary region in any ceramic

Fig. 6. Nyquist plots of investigated Cr2O3 doped SnO2 samples
(measurement temperature was 488◦C).
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materials that contain highly resistive grain boundaries.
So we have a new parameter for the characterization
of these materials. Also, application of fractal theory
in materials science, as well as the possibility to cal-
culate fractal dimensions using the simple method of
impedance spectroscopy, open a new approach of in-
vestigation with a more pronounced consideration of
the influence of inhomogeneities and defects on mate-
rials properties.

Recently, several excellent articles about the
impedance of highly resistive grain boundaries in real
ceramics were published [17–19]. These authors con-
sidered the impact of three important deviations from
the commonly used brick-layer model: laterally inho-
mogeneous grain boundaries, grain boundary proper-
ties varying from boundary to boundary and deviations
from a cubic grain shape [17, 19]. They simulated all
these situations and found that the brick-layer model
fails in some of the cases. It is interesting that these
authors also obtained distorted, i.e. skewed arcs, when
they simulated some deviations from ideal brick-layer
model. Nevertheless these authors did not use fractal
theory to describe deviations from ideal cases although
fractal theory is very convenient for describing disor-
dered systems.

Finally it has to be emphasized that our model could
be applied on the investigation of rough surfaces. In
such a case the parameter β would represent the rough-
ness. However we believe that the inhomogeneous dis-
tribution of charge carriers is a more common disorder
than the grain boundaries surfaces roughness in ce-
ramic materials.

3. Conclusions

Based on a simple fractal model it was shown that an
inhomogeneous distribution of charge carriers in the
vicinity of grain boundaries results in a non-Debye be-
haviour and distribution of relaxation times in ceramic
materials. The impedance function of a grain boundary
region was derived in the form of the Davidson–Cole
equation. The fractal dimension of the inhomogeneous
distribution of charge carriers in the region close to
the grain boundaries could be calculated based on the
relation ds = 1 + β, where β is the parameter from
the Davidson–Cole equation. On this way the param-
eter β obtains physical meaning, because it represents
the measure of the inhomogeneity of the charge car-
riers distribution in the vicinity of grain boundaries.
The derived model enables the calculation of fractal

dimension of the grain boundary region in any ceramic
materials that contain highly resistive grain boundaries,
using the simple method of impedance spectroscopy.

It has to be emphasized that our model could also be
applied on the investigation of rough surfaces. In such
a case the parameter β would represent the roughness.
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